不定积分计算代数换元法应用举例

吉禄学阁课程2024-04-15 23:22:45  129

例题1:∫dx/[3+3√(85x+38)].

思路:变三次立方根无理式为有理式,变量替换t=3√(85x+38)。

解:设t=3√(85x+38),则85x+38=t3,85dx=3t2dt;

∴∫dx/[3+3√(85x+38)]

=(1/85)*∫85dx/(3+t),

=(1/85)∫3*t2dt/(3+t),

=(3/85)∫[(t-3)(t+3)+32]dt/(3+t),

=(3/85)*[∫(t-3)dt+32∫dt/(t+3)],

=(3/85)*[1/2*t2-3t+32*ln|t+3|+c],

=(3/170)*t-(9/170)t+(27/170)*ln|t+3|+C,

=(3/170)*3√(85x+38)2-(9/170)* 3√(85x+38)+(27/170)*ln|3√(85x+38)+3|+C.

例题2:∫[95+24(√x)3]dx/(3+√x).

思路:变平方根无理式为有理式,变量替换t=√x.

解:设t=√x,则x=t2,dx=2tdt;

∴∫[95+24(√x)3]dx/(3+√x),

=2∫(95+24 t3)tdt/(3+t),

=2∫(24*t3-24*3*t2+24 *32*t-553)dt

+2*553∫dt/(t+3),

=(1/2)*24*t?-(2/3)*24*3*t3+24*32*

t2-2*553t+2*553*ln|t+3|+C,

=(1/2)*24*x2-(2/3)*24*3*√x3+24*32*x-2*553*√x

+2*553*ln(√x+3)+C.

例题3:∫[√(66x+7)-23]dx/[23+√(66x+7)].

思路:变根式无理式为有理式,变量替换t=√(66x+7).

解:设t=√(66x+7),则66x+7=t2,66dx=2tdt;

∴∫[√(66x+7)-23]dx/[23+√(66x+7)]

=(1/66)∫(t-23)*2tdt/(23+t),

=(1/66)[∫(2t-4*23)dt+(2/33)*232∫dt/(t+23)],

=(1/66)(t2-4*23t)+(2/33)*232*ln|t+23|+C,

=(1/66)( 66x+7-4*23*√(66x+7)+

(2/33)*232*ln[(√(66x+7)+23)]+C。

例题4:∫x√(79-21x)dx.

思路:变根式无理式√(79-21x)为有理式,变量替换t=√(79-21x).

解:设t=√(79-21x),则t2=79-21x,即:x=(1/21)(79-t2),

此时有:dx=-(1/21)*2tdt;

∴∫x√(79-21x)dx

=∫(1/21)(79-t2)*t*d[(1/21)(79-t2)],

=∫(1/21)(79-t2)*t*[-(1/21)]*2tdt,

=-2*(1/212)∫(79-t2)*t2dt,

=-2/212*∫(79t2-t?)dt,

=-2/212*[(2/3*79*t3-(1/5)*t?)]+C,

=-316/(3*212)*t3+2/(5*212)t?+C,

=-316/(3*212)*√(79-21x)3+2/(5*212)*√(79-21x)?+C。

例题5:∫(14?*17?)dx/(196?-289?).

思路:将被积函数进行变形,再进行变量替换,本题变量替换t=(14/17)?.

解:设t=(14/17)?,则dt=t*ln(14/17)dx,

∫(14?*17?)dx/(196?-289?).

=∫(14/17)?dx/[1-(14/17)2?],

=∫t*1/[t*ln(14/17)]dt/(1-t2),

=1/ln(17/14)*∫dt/(1-t2),

=1/(ln14-ln17)*[∫dt/(t-1)-∫dt/(t+1)],

=1/(2ln14-2ln17)*ln|(t-1)/(t+1)|+C,

=1/(2ln14-2ln17)*ln|[(14/17)?-1]/[(14/17)?+1]|+C,

=1/(2ln14-2ln17)*ln|(17?-14?)/(17?+14?)|+C.

例题6:∫dx/3√[(77x+73)2*(77x-73)?].

思路:代数式换元法,本题变量替换t=(77x+73)/(77x-73).

解:设t=(77x+73)/(77x-73),有:

-2*77*73dx/(77x-73)2=dt,

即:dx=-(77x-73)2*dt/2*77*73.

代入积分函数有:∫dx/3√[(77x+73)2*(77x-73)?],

=∫dx/{3√[(77x+73)/(77x-73)]2*(77x-73)2] },

=[-1/(2*77*73)]∫(77x-73)2*dt/[3√t2*(77x-73)2] ,

=[-1/(2*77*73)]*∫dt/3√t2 ,

=[-3/(2*77*73)]* 3√t+C,

=-3/(11242*12)*3√t+C,

=-3/(11242*12)*3√[(77x+73)/(77x-73)]+C。

转载此文是出于传递更多信息目的。若来源标注错误或侵犯了您的合法权益,请与本站联系,我们将及时更正、删除、谢谢。
https://www.414w.com/read/235523.html
0
最新回复(0)