在特斯拉2024年的年度股东大会上,首席执行官埃隆?马斯克(ElonMusk)谈到了困扰特斯拉完全自动驾驶(FSD)的一个重大难题。该难题印证了业内人士两年前的猜测,并有可能影响特斯拉实现无人驾驶出租车的目标。
马斯克表示,随着FSD系统不断进步,判断哪个AI模型更好变得愈发困难。因为当行驶数千英里后才出现一次需要人工干预的情况时,如何快速评估新模型的性能就成了难题。
“这些不同的AI模型并不会完美地解决所有问题,”马斯克坦言,“一个模型解决了A问题,却可能带来B问题。”
Cleantechnica编辑ZacharyShahan两年前就推测特斯拉FSD系统可能存在这个“跷跷板问题”,即系统在修正既有问题的过程中可能会引入新的问题,导致整体效果裹足不前。
针对这一难题,特斯拉是如何解决的呢?“我们正通过多种方式来解决这个问题,包括仿真测试、影子模式运行,”马斯克介绍说,“让部分车辆不启用FSD功能反而能起到帮助,我们可以通过影子模式来对比新模型的驾驶行为和用户行为,从而发现不同模型的优劣势。”
特斯拉可以通过旗下数百万辆汽车进行测试,比较AI模型的预测行为和用户实际驾驶行为之间的差异,从而判断哪个模型表现更好。
“目前最大的限制并不是训练数据,而是测试AI模型的效率,”马斯克坦言,“以及如何巧妙地判断新模型是否更优秀。例如,我们知道一些特定的路口非常复杂……所有模型在没有复杂路口的良好道路上行驶时都表现良好。因此,我们在美国选取了几千个复杂路口,专门用来测试新模型的性能。”
IT之家注意到,马斯克还提到,目前尚未完全发挥自动驾驶硬件Hardware4的全部潜能,计划将在今年晚些时候进行升级。
总之,解决“跷跷板问题”以及快速迭代FSD模型将是特斯拉实现完全无人驾驶和无人驾驶出租车的重要挑战。
本文源自:IT之家
转载此文是出于传递更多信息目的。若来源标注错误或侵犯了您的合法权益,请与本站联系,我们将及时更正、删除、谢谢。
https://www.414w.com/read/779251.html