直观易用的大模型开发框架LangChain, 你会了没?

云上有数芯2024-04-11 09:35:26  110

目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Chat三种功能模型声明)。读完此文章,您可利用集团申请的api key+LangChain框架进行快速开发,体验大语言模型的魅力。

一、简介

LangChain 作为一个大语言模型(LLM)集成框架,旨在简化使用大语言模型的开发过程,包括如下组件:

LangChain框架优点:

1.多模型支持:LangChain 支持多种流行的预训练语言模型,如 OpenAI GPT-3、Hugging Face Transformers 等,为用户提供了广泛的选择。

2.易于集成:LangChain 提供了简单直观的API,可以轻松集成到现有的项目和工作流中,无需深入了解底层模型细节。

3.强大的工具和组件:LangChain 内置了多种工具和组件,如文档加载器、文本转换器、提示词模板等,帮助开发者处理复杂的语言任务。

4.可扩展性:LangChain 允许开发者通过自定义工具和组件来扩展框架的功能,以适应特定的应用需求。

5.性能优化:LangChain 考虑了性能优化,支持高效地处理大量数据和请求,适合构建高性能的语言处理应用。

6.Python 和 Node.js 支持:开发者可以使用这两种流行的编程语言来构建和部署LangChain应用程序。

由于支持 Node.js ,前端大佬们可使用Javascript语言编程从而快速利用大模型能力,无需了解底层大模型细节。同时也支持JAVA开发,后端大佬同样适用。

本篇文章案例聚焦Python语言开发。

二、基本组件

?Prompt【可选】

?告知LLM内system服从什么角色

?占位符:设置{input}以便动态填补后续用户输入

?Retriever【可选】

?LangChain一大常见应用场景就是RAG(Retrieval-Augmented Generation),RAG 为了解决LLM中语料的通用和时间问题,通过增加最新的或者垂类场景下的外部语料,Embedding化后存入向量数据库,然后模型从外部语料中寻找相似语料辅助回复

?Models

?可做 Embedding化,语句补全,对话等

支持的模型选择,OpenAI为例

?Parser【可选】

?StringParser,JsonParser 等

?将模型输出的AIMessage转化为string, json等易读格式

上述介绍了Langchain开发中常见的components,接下来将通过一简单案例将上述组件串起来,让大家更熟悉Langchain中的组件及接口调用。

三、小试牛刀

import os# gpt 网关调用os.environ["OPENAI_API_KEY"] = "{申请的集团api key}"os.environ["OPENAI_API_BASE"] = "{您的url}"import openaifrom dotenv import load_dotenv, find_dotenv_ = load_dotenv(find_dotenv)openai.api_key = os.environ['OPENAI_API_KEY']from langchain.prompts import ChatPromptTemplatefrom langchain.chat_models import ChatOpenAIfrom langchain.schema.output_parser import StrOutputParserprompt = ChatPromptTemplate.from_template( "tell me a short joke about {topic}")model = ChatOpenAIoutput_parser = StrOutputParserchain = prompt | model | output_parserchain.invoke({"topic": "bears"})

输出:

"Why don't bears wear shoes? Because they have bear feet!"

其中 chain = prompt | model | output_parser 按照数据传输顺序将上述声明的 prompt template、大语言模型、输出格式串联起来(Chain),逻辑清晰直接。

代码案例:调用Embedding、Completion、Chat Model

?将文本转化为Embedding : langchain_community.embeddings <-> OpenAIEmbeddings

from langchain_community.embeddings import OpenAIEmbeddingsembeddings = OpenAIEmbeddings( model="text-embedding-ada-002", openai_api_key=os.environ["OPENAI_API_KEY"], openai_api_base=os.environ["OPENAI_API_BASE"])text = "text"query_result = embeddings.embed_query(text)

?文本补全:langchain_community.llms <-> OpenAI completion

from langchain_community.llms import OpenAIllm = OpenAI( model_name='gpt-35-turbo-instruct-0914', openai_api_key=os.environ["OPENAI_API_KEY"], base_url=base_url, temperature=0)llm.invoke("I have an order with order number 2022ABCDE, but I haven't received it yet. Could you please help me check it?")

?对话模型:langchain_openai <-> ChatOpenAI

from langchain_openai import ChatOpenAImodel = ChatOpenAI(model_name="gpt-35-turbo-1106") # "glm-4"model.invoke("你好,你是智谱吗?")

四、总结

LangChain作为一个使用流程直观的大模型开发框架,掌握它优势多多。希望您可以通过上述内容入门并熟悉LangChain框架,欢迎多多交流!

转载此文是出于传递更多信息目的。若来源标注错误或侵犯了您的合法权益,请与本站联系,我们将及时更正、删除、谢谢。
https://www.414w.com/read/220657.html
0
随机主题
所以你人生的第一台外设应该是?美国收割阴影笼罩全球, 中国主动出击, 用黄金对抗美元霸权那些演绎帝王专业户,你心中的最佳帝王是谁?鲜奶成为奶中王者, 头部老大再出狠招, 去年液态奶卖了超150亿中国星智擎VS日本双擎, 5月23日东京秋名山燃爆全场!6.18电视超详细选购指南 快来抄作业!“离奇预言”缘何频频能够公开发布? 同花顺回应: 针对类似不当言论将更严格审核[中国有约]漳州古城迎来国际友人, 共赏闽南文化瑰宝手机高端化趋势明显:超半数畅销机型价格600美元起从“互掐”到“握”手 警律联动化解矛盾纠纷深圳坪山携手复旦大学 推动集成电路与半导体产业创新发展红米Turbo3直降300元?1699告诉你什么叫“生死看淡,不服就干”赵明明: 被英家人抛弃的步嫂子宋丹丹后尘, 为子退圈的她现状如何大批澳洲华人不知道: 回国花的钱, 居然可以找回来!贸易商表示, 由于巴西价格坚挺, 中国购买美国大豆深蓝CEO称在电动化的浪潮下 硬派的燃油时代结束了肯辛顿宫拐弯抹角更新凯特最新健康状况, 透露其已在带病工作JBL万花筒6和哈曼卡顿luna人声对比,有听出哪个好嘛联手恩比德? 76人追逐乔治, 东决G1报告出炉, 肖华签下70亿大合同坎塞洛叫板c罗,没资格伊总统坠机身亡, 美以高度紧张撇清责任, 美前军官揭穿: 和美有关
最新回复(0)